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STABILIZATION OF A GIVEN POSITION OF AN ELASTIC ROD ~ 

E.K. LAVROVSKII and A.M. FORMAL'SKII 

An elastic rod which can be displaced along a straight line in a plane 
is considered. The rod is put into motion by an electric motor mounted 
at one end. A weight is clamped at the other end. The stabilization of 
the position of the rod by linear feed-back is studied. The control 
voltage fed to the motor is a linear combination of signals for the 
displacement of the rod, for the rate of displacement, for its integral, 
and for the deformations. Delay in the control circuit is taken into 
account. Domains of asymptotic stability are constructed in the space 
of feed-back factors. This problem arises, for example, when an elastic 
manipulator is designed. 

I. T~ equation8 of motion. Consider an elastic homogeneous rod of length ~ and constant 
cross-section S, which can be displaced in the horizontal plane (the plane of Fig.l). The 
motion of the rod is controlled by an electric drive. The motor ME and the drive reducing 
gear R are mounted in the carriage C. The output pinion of R engages with the straight toothed 
director-rake DR. As a result, the carriage can move along the director. The fixed axis OZ 
is parallel to the director. The end of the rod 0 is cantilever clamped in the carriage, so 
that the straight line OXj tangential to the neutral line of the rod at the point O, is perpen- 
dicular to the director. At the other end of the rod a weight is clamped, which we shall 
regard as a particle of mass M. 
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Fig.l 

In Fig.l, instead of the rod, we show its (curved) neutral line OM. We assume that OM 
always lies in the horizontal plane. Denote by u(x,t) the deviation of the point with 
coordinates z of the neutral line at the instant t from the moving axis OX. When there is no 
deformation, v(x,t)~0, and the lines OM, OX coincide. 

Let z denote the deviation (displacement) of the end of the rod O from the wanted fixed 
point 0,. In the wanted position the rod neutral axis also coincides with the fixed axis 01X I, 
perpendicular to O,Z. 

In the framework of the linear theory of thin straight non-extensible rods /i, 2/ the 
equations of notation of this mechanical system can be written as 

El f f "  (x, t) + pS [v'" (x, t) + z'" (t)] = 0 

M,z'" (t) = F - -  E I v "  ( 0 ,  t) 
v (O, t )  = v '  (0 ,  t )  = v" ( l ,  t )  = 0 

E I v "  (l, t) - -  M Iv'" (/, t)  + z'" (t)] = 0 

(1 1) 

( i  .2)~ 

(~.3) 
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Here, p is the rod material density, E is Young's modulus, I is the constant moment of 
inertia of the rod cross-section about the vertical axis, M k is a sum whose terms are the 
mass of the carriage plus electric drive and the moments of inertia, reduced in the light of 
the reduction factor, of the motor armature and the reduction gear pinion (which naturally 
have the dimension of mass), and F is the force acting from the rake on the reduction output 
pinion, created by the moment of the electromagnetic forces about the armature axis. 

Eq. (1.1) describes the plane transverse oscillations of the rod /1-3/, given the acceler- 
ation z'" (t) of the end 0. The equation takes no account of energy dissipation during the 
oscillations. The drive carriage motion is described by F~. (1.2), the second term on the 
right-hand side of which is the shearing force acting on the carriage from the rod. 

If the right-hand end is clamped to the centre of mass of the weight, and the moment of 
inertia of the weight about the centre of mass ] ~ 0, the boundary condition ~w (l, t)= 0 has 
to be replaced by Is"' (/, t) = --EIu" (/, t). 

The rod rotary motion about an end was studied in /4-6/ (see also L.D. Akulenko, S.A. 
Mikhailov, and O.L. Satovskaya, Dynamic models of elastic manipulation robots, Preprint No. 
349, Inst. Problem Mekhaniki, Akad. Nauk SSSR, Moscow, 1988). Though the linearized equations 
of motion in these papers differ from (1.1)-(1.3), they have the same structure. 

Neglecting the motor winding inductance, we write the force F as /7/: 

F = dau  - -  dzz" ( 1 . 4 )  

Here, u is the control voltage fed to the motor, and d,, ~ are positive constants whose 
values depend on the motor characteristics and the reduction factor. 

We introduce the new variable 

w (x, t) = v (z,  t) + z (t) ( t .5 ) ,  

which characterizes the total deviation of the deformed rod from the straight line OaX x. We 
also introduce the dimensionless variables w*, x*, z*, t*, u* in accordance with 

w = l w * ,  x = l x * ,  z = l z * ,  t = x t * ,  u = U u *  ( t .6 ) .  

x" = p S I ' / ( E I ) ,  U = El/(12dl) 

Substituting (1.4)-(1.6) into Eqs.(l.l)-(1.3) and omitting the asterisks, we obtain 

w . . . .  ( z ,  t) + w" (z ,  t) = O 

(~tw'" (0, t) A- dw" (0, t) + w '"  (0, t) = u (t .7) 

w' (O, t) = w" ( t ,  t) = 0 ,  w ' " ( t , t )  = m w " ( l , t )  

P" = - - b ~  ' m = - ~ F  ' d --  V ' ~  

m are the dimensionless masses of the carriage plus drive and the weight, Here, ~ and 
and d is the dimensionless factor of counter-electromotive force. The second relation of 
(1.7), obtained from Eqs.(1.2), (1.4) with the aid of the equation 

w (0,  t) = z (t) ( t . 8 )  

plays the role of boundary condition in the new boundary-value problem. The a posteriori 
Eq.(l.8) is obtained from the boundary condition (1.3) v(0, t) = 0. If the control u is 
independent of the variable E, the latter can be regarded as cyclical. 

2. FOZ'~.47,Gt~on of the pz'~b~eM and the co~tI~. If u~---0, the boundary value problem 
(1.7) has the solution 

w ( x , t )  = C ( v ( x , t )  = 0,  z = C) ( 2 . t )  

where C is an arbitrary constants. The solution (2.1) corresponds to an undeformed rod, 
deviating by z = C from the line O,X I. If C = 0, we obtain from (2.1) 

w ( x , t )  = 0 ( v ( x , t )  = 0 ,  z = O) (2.2) 

Let us find the control u that ensures asymptotic stability of the solution (2.2). 
The stabilizing control will be sought as the linear feedback 

t 

r u" (t) + u (t) = - -  ~ow (0, t) - -  7,w" (0, t) - -  7, I w (0, ;) d ;  - -  ~ ,  6 .w" (x., t) (2.3) 
o 

Here, T~0 is the dimensionless time constant, ~0,7t, 72 are the constant feedback 
factors with respect to z and its derivative and integral, ~, is the constant feedback factor 
with respect to the bending deformation of the rod at the point x,, while throughout, n =I, 
...,Y and summation is performed from n = I to n = N. We take t = U as the start of the 
control process. The feedback (2.3) assumes that position-, rate of change of position-, and 
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deformation-sensers (strain gauges) are present. 
Corresponding to the linear bundary-value problem (1.7),(2.3) we have a spectrum of eigen- 

values. We consider the following specific form of our problem on the asymptotic stability of 
the solution (2.2): 
it is required to find, in the space of feedback factors (2.3), the domain in which all the 
eigenvalues ~ are such that Re~<0. 

The problem of finding the control of systems with distributed parameters for which the 
eigenvalues ~ are such that Be ~ 0  was studied in /8, 9/. For the different definitions 
of asymptotic stability of the motion of systems with distributed parameters see e.g., /i0, ii/. 

Apart from (1.7), we naturally take for comparison the equations of motion of an absolutely 
rigid rod with a weight at one end the feedback (2.3). In the dimensionless variables of 
(1.6), these equations are 

(~ -5 m -5 t)z'" -4- dz" = u 
t 

Tu" -5 u = --  7oz - -  7~z" - -  %', I z (~) d~ 
o 

(2.4) 

$.  The ~te~ist~ equut~on. 
the form 

w (x, t) = L ~ t X  (x) 

where L is a constant, ~ is an eigenvalue, and X (x) an eigenfunction. 
For X (x) we obtain the boundary value problem 

The solution of problem (1.7), (2.3) will be sought in 

x .... ( x ) + ~ x ( x ) = O  
[ ~ , ~ x  (o) -5 d ~ X  (0) -4- X ~ (O)l(rX + t)~ = 

(VO ~ -5 Vl ~ "3i- '~2)X (0) - -  ~ ~(Yn xt' (Xn) 
X '  (O) = X" ( i )  = 0 ,  X " ( t )  = m X ' X ( t )  

When Y~ = 0, both sides of the first of Eqs. (3.2) must be cancelled by 
The solution of problem (3.1), (3.2) will be sought as the sum 

X (x) = Clew -5 C~e ~'~ -5 C,e -v': -5 C~e -~';~ 

where C, .... , C~ are unknown constants, ~ is the square root of -i, and 

On s u b s t i t u t i n g  ( 3 . 3 )  i n t o  c o n d i t i o n  ( 3 . 2 ) ,  we o b t a i n  a s y s t e m  o f  l i n e a r  h o m o g e n e o u s  
equations in the constants Ca,..., C,. The non-zero eigenvalues ~ satisfy the equation 

t t ~ - t +--my) e -'v e v _ _  e ~ ;  e -*q  1 e -~'4 

dot (t -4- my,) e ~ ( - -  ~ + my) e '~ ( - -  t -4- my) e -v ¢i = 0 

a+ b a b+ 

b+ = S (~) ___+ tv s (T~ + l) ~ - -  v2~ ~ o .e  : F ~ -  

R (k) = ~ (~ .  + d) (T~. + t)  -5 yo ~, + ~,k2 + ¥~ 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Expanding the determinant in (3.5), we obtain 

R (k) e 1 (v, m) -- vs~ (Tk + l) R ,  (% m) -5 V,vV, Y, R3 (v, zn, m) = 0 (3.6) 

R 1 (% m) = Q* (v) -5 m'~Q_ (v), TQ (~,, m) = Q+ (~) -5 2mvQ2 (v) 

Q , @ ) = l + c o s v e h v ,  Q s @ ) = c o s v c h  
Q+(v)  = s h ~ c o s v 4 - c h v s i n v  

R a @ , x , m )  = s h ~ , s i n [ ~ ( t - - x ) l - - c h ~ c o s [ ~ ( t - - x ) ] - 5  

cos ,¢ ch [~ (t - -  x)] -5 sin v sh [~; (t - -  x)] -5 ch ~;x - -  cos vx -5 

2my {sh [~ (1 - -  x)]cos v -5 ch v sin [v (1 - -  x)]} 

The polynomial R (~) is characteristic for the electric motor with feedback (2.3) when 
o, = 0, while R, (v, m) is the characteristic quasipolynomial of the elastic rod with canti- 
lever clamping, and /~z (~, m) is the characteristic quasipolynomial of the rod whose left end 
can move freely along the straight director, and the tangent to the neutral line of which at 
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the point 0 is perpendicular to the director. 
Two expressions for ~ are found from Eq. (3.4): k = i~ = and k =--i~ 2. However, if 

is the root of one equation, then ~ is the root of the other, so that the k found by 
solving the equations are the same. It therefore suffices to analyse just one equation, 
obtained by substituting into (3.6) e.g., the expression 

~, = ~,2 (3.7)  

In addition to ~ Eq.(3.6), (3.7) has the roots --v, ~, and --~v, i.e., the roots are 
grouped in fours. Corresponding to the roots -~v and /:~ we have the eigenvalues ~ and 

4. Domains of stabiZ~ty. To construct the domains of asymptotic stability in parameter 
space, we shall use the method of D-divisions /12/. If ~ takes imaginary values, ~ takes 
imaginary of real values. 

Let 
,~. = o (4 . t )  

We substitute ~ = e into Eqs. (3.6) and (3.7) ,where e is a real number, and we equate 
the real and imaginary parts to zero 

(FTe 2 -- de 4 -- 7,8' + ~,)R, (e, ra) + TeTli2 (e, m) = 0 (4.2) 

( - - ~ ;  - -  dT8 '  + 7oe ' )R ,  (8, , . )  - -  e~R~ (8, m) = 0 

These define, in parameter space, mappings of the v = e real axis, --oo~8<+oo. 
They remain unchanged when 8 is replaced by --8, or by +~e. This is because the roots of 
Eqs. (3.6) and (3.7) are grouped in fours,as mentioned above. It follows from what has been said 
that the boundary of an asymptotic stability domain in parameter space belongs to the surface 
(4.2), obtained with 0~e<oo. We shall construct the domains analytically by passing 
from special cases to the general case. 

First, let 
72=0, T = O  (4 .3)  

With 7s = 0, both sides of (4.2) have to be cancelled by 82 . On putting then 8 = 0, we 
obtain 7o = 0. With 8~0, from the first of Eqs.(4.2) we obtain 7x =--d, and from the 
second 

Yo = F 8' -I- e3R, (e, m)lRz (e, m) (4.4) 

It can be shown that, on the semi-axis e>0, the zeros of the functions Q,(e) and 
Q_ (e) alternate, as do the zeros of Q+ (e) and Qz (e). Given any m, in an interval between 
zeros of opposite signs of Qz (e) and Q_(e) (Q+(e) and Qz (8)), there is just one zero of 
Rx (e, m) (Rz (e, m)). The zeros of R, (e, 0) and R z (e, 0) equal to Q, (e) and Q+ (e), alternate. 
The zeros of R,(e,m), R=(e, m) vary continuously as m varies. It can be shown that these func- 
tions have no common zeros for any m. 

By what has been said, given any m, the zeros of Rx(8, m) and Ri(8 , m) alternate. 
Hence, in particular, as 8 varies from 0 to +oo the quantity (4.4) varies from --ooto~-oo. 
The boundaries of the domain of stability thus include the lines 70 = 0 and 7x = --d. 
To find the domain, we write the approximate characteristic Eqs.(3.6), (3.7) in the neighbour- 
hood of 70 = 0, 71 = --d, v = ~ = 0. For this, we put 70 =--A0, 7, = --d-- Az, k = Ak. Series- 
expanding the left-hand side of Eqs.(3.6), (3.7) retaining only the leading terms, we obtain 

--AD (~ + m + I) + A~, + A0 = 0 (4.5) 

with A0 = 0, A,~0, and likewise with A0~0, A, = 0 , this equation has a real root Ak~0. 
By what has been said, the domain of asymptotic stability, if there is one, is given by 

the inequalities 
7 0 > 0 ,  7 ~ > - - d  (4.6) 

Asymptotic stability in fact occurs in this domain, call it D. 
To prove this, we use a similar device to that in /3, 13/. Using the two penultimate 

boundary conditions (3.2), we obtain 

i I 
Ix "  (=)z(=)~==x-o)zO)-x" (o )z (o )+ Ix ' (= )x ' ( , )  a= 
o o 

In this equation we substitute the derivative X" (z) from Eg. (3.1) and the derivatives 
X" (I), x" (0) from the first and last of conditions (3.2). Then, 
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1 

x, [ !  x <:) x <:~ ~: + ~x (0) x <0) + m x  (~)x <~)1 + 

! 

0 

In the domain D the roots of this quadratric equation in ~ are negative. Hence all the 
eigenvalues ~ are such that Re~ < 0. But on the other hand, under conditions (4.6), there 
are no eigenvalues X such that Rek = 0. The assertion is proved. 

In the problem of stabilizing the position z = 0 of an absolutely rigid rod, in accord- 
ance with Eqs.(2.4) under condition (4.3), the domain of asymptotic stability is again given 
by inequalities (4.6). hence, given position and velocity feedback, the "pliability" (or 
"compliance") of the rod does not lead to loss of stability. 

Consider the more general case than (4.3), when only 

Ys = 0 (4.7) 

Putting 8 = 0 in Eqs.(4.2), then 8~0, we see that the boundary of the stability 
domain consists of pieces of the straight line Y0 = 0 and of the curve 

7o = dT84 + ~e 4 -}- e31:t~ (e, m)/B1 (8, m) (4.8) 

Y1 = - - d  + p~Ts 4 -}- Te3Bs (s, rn)/B 1 (8, m) 

As 8-+0, we see from (4.8) that y0-+0, 7x-~--d. Let e 8 = s,(rn) (s= 1,2 .... ) be the 
8-th root of R l (8, nl). For 0< e < ~, we have R, (8, ra)>0, /~, (8, ~) >0, i.e., ~0>0, ~i> 
--d. As e -+ 8, -- 0 we have Y0, 71 -~ oo. It follows from Eqs. (4.8) that 

%,, = Tyo - -  d ( t  -5 TSs ' )  (4 9) 

-d 

Fig. 2 Fig. 3 

Hence, as 8--~8 I, the curve (4.8) tends to the asymptote A I 

V* = Y~0 -- d (t + TSe, ') (4.10) 

Since the zeros of R I (8, m), R s (e, m) alternate, the curve (4.8) lies in the strip 
between its asymptotes AI and A s for 8, < e < e s . The asymptote A s is given by (4.9) with 
e = e~. As e-+e,-~0, we have y0-~--oo, and the curve (4.8) tends to the asymptote A l 
(4.10). As e-+e 2 --0, we have y0-+ co, and the curve (4.8) tends to the asymptote A s. 
The branch of the curve (4.8) , obtained with e, < 8 < 8,+, (s = 2, 3, . . .), is located between 
the asymptotes A, and A,+ I (Fig.2). The curve (4.8) thus consists of an infinite number 
of branches, each of which cuts the ~, axis. 

Consider the first branch of (4.8), obtained with 0 < e < .81 (rn). Let D (Y) (Fig. 2) be 
the open domain bounded by this branch and the semi-axis ~o = 0, YI ~--d. With ~,, 71 ~ D (T), 
there is no eigenvalue such that Re ~ = 0. As Y --~ 0 we have D (T) -~ D, and if 70, 71 ~ D, 
then all the eigenvalues are such that Re ~ < 0. On further considering the set D (Y) with 
0 ~,~ T < oo in the space of the three parameters ~0, YI, T, we can see that, if Y0, YI ~ D (Y), 
asymptotic stability holds. It can be shown by suitable arguments that, if Y0, YI ~ D (T), 
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the system is unstable. In short, the domain of asymptotic stability has been obtained in 
the case (4.7). 

The stability domain of the equilibrium z=0 of system (2.4) with ~=0 lies between 
the semi-axis 70 = 0, YI ~--d and the half-line N: 

r ( ~ + m + l )  >0 (4 . t t }  7,= - - d  + Y d + ~ + m + t  7o, 7o 

The curve (4.8) touches the line (4.11) at the point 7o = 0, Y, = --d , and lies above it 
for 70>0. The asymptote (4.10) cuts the line (4.11) in the upwards direction (Fig.2). 
Thus the domain of stability for the elastic rod belongs to but is less than the domain of 
stability for the rigid rod. With ~ = d = 0, i.e., when no account is taken of the electric 
drive dynamics and the force F is the control, the curve (4.8), (4.10), (4.11) are identical, 
and so are the domains of stability. 

Now take the most general case under condition (4.1) when 72~0, Y~&0. 
It can be seen from Eqs.(4.2) that, in the space of variables 70, 7,, 7~', the boundary of 

the domain of stability belongs to the plane 7~ = 0. With ~ = 0, Eq.(3.6), (3.7) has the 
root ~ = 0, and with 7~<0, it has a real root ~>0. Let us take a value 7~>0, and 
construct the domain of stability in the plane of variables 70, 71. 

Using arguments similar to those in the case (4.7), we can show that the boundary of the 
domain of asymptotic stability is given by parametric equations which are the same as (4.8) 
except for the presence of the term 7~/8 ~ on the right-hand side of the second equation (0< 
e < e l ( m ) ) .  As e-~0, the curve F approaches the Y1 axis asymptotically, while as e-~e,~ 
it approaches the line shifted upwards relative to the line (4.10) by the value of this term. 
The domain of asymptotic stability bounded by the curve F is hatched in Fig.3. 

The stability domain of the equilibrium z ~ 0 of system (2.4) is bounded by a branch 
of the hyperbola 

Y o [ ( T d +  ~ + m +  t ) ( 7 1 + d ) - -  r ( ~ + m +  t)70 ] = 
(Td + ~ + m + t)~7~ 

(70 > O, vl > --d, 7, > O) 

Its asymptotes are the Y, axis and the line ~ (4.11). This domain is larger than the 
domain bounded by the curve F. 

5. Stability when defost&m s/g.a/s are present. We renounce condition (4.1) and 
assume that 

~1=~0, z~=O, ~ , = ~ s = . . . = a N = O  (5.t) 

The equations of the boundary of the domain of stability under condition (5.1) are 
obtained by adding, to the left-hand side of the second equation of (4.2) the term 

1/2gle l~  $ (8, O, m) = gas ~ [sh e sin e Jr meQ+ (e)] 

Instead of the first equation in system (4.8) we now obtain 

7o = dTe4 + ~e 4 + e ~ [eR~ (e, m) - -  x/~alR a (e, O, m)l/R1 (e, m) (5.2) 

W i t h  0 < e < e l ( m )  we h a v e  R s ( e ,  0, m ) > 0 .  H e n c e ,  a s  may b e  s e e n  f rom E q . ( 5 . 2 ) ,  w i t h  
O,<0 the stability domain in the plane of Y0, 71 is greater than the domain obtained 
under conditions (4.1), (4.7) by means of Eqs.(4.8). As ~i<--oo, in spite of the presence 
of the delay T, the domain of stability obtained under conditions (4.7), (5.1) tends to the 
domain D (4.6) which is the domain of stability for an absolutely rigid rod with 7s = 0, T = 0. 
Thus, by introducing deformation signals into the feedback, we can increase the domain of 
stability. It would seem that, if the derivatives of these signals are also introduce into 
the feedback, the domain of stability can be further increased. 

The domains of asymptotic stability can be constructed numerically by using our equations 
with specific values of the system parameters ~,m, d, T. 
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FORCED OSCILLATIONS AND THE RADIATION OF SOUND BY A 
CIRCULAR PLATE INTERACTIN6 WITH A FLUID * 

S.N. BESMENKOV 

A method is proposed for calculating forced oscillations and the acoustic 
radiation of a circular disc during its axially symmetric oscillations in 
an infinitely rigid baffle on the boundary of separation between fluid 
media. The dependence of the components of the deflection and the 
acoustic pressure on the excitation frequency as well as their 
distribution over the surface of the plate are investigated. 

The proposed method is simpler than the use of expansions over 
orthogonal systems of functions /i, 2/. It leads to a finite resolvent 
system which contains the values of the acoustic pressure at a series of 
fixed points on the surface of the disc as unknowns. Compared with the 
finite-difference method** (Golovanov V.A., Muzychenko V.V., Peker F.N. 
and Popov A.L., Scattering and sonic emission by elastic shells in a 
fluid, Preprint No.261, Inst. Problem Mekhaniki Akad. Nauk SSSR, Moscow, 
70 pp., 1985.) the proposed method enables one to attain the required 
accuracy using a smaller number of mesh points and leads to resolvent 
systems with better computational properties (according to the 
conditionality index). We also remark upon a method for determining the 
displacement potential of the fluid using a function of the deflection of 
the non-axially symmetrically oscillating disc /3/ and the results of 
experimental investigations of the hydroelastic oscillations of a disc 
/4, 5/. 

Consider the forced oscillations of a circular disc which is clamped in an infinitely 
rigid baffle on the boundary of separation between fluid half spaces. Omitting the time 
factor exp (--i~, we shall write the equation for the flexure of the disc taking account of 
the reaction of the acoustic media in the form 
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